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Abstracts 
Visco- Elastic Plates are being increasingly used in the aeronautical and aerospace industry as well as in other 

fields of modern technology. Plates with variable thickness are of great importance in a wide variety of engineering 

applications i.e. nuclear reactor, aeronautical field, naval structure, submarine, earth-quake resistors etc. A 

mathematical model is presented for the use of engineers and research workers in space technology, have to operate 

under elevated temperatures.It is assumed that temperature varies exponentially in x-direction : 
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and thickness of plate varies parabolic in x  & linear in y direction: 
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To obtain frequency equation, the Rayleigh-Ritz method is used which allows satisfying all four boundary conditions. 

The frequency for first two modes of vibration is calculated for different values of thermal gradient and taper constants 

with the help of latest computational technique i.e. Mat Lab. 

 

Keywords:  Vibration, Thermal Gradient, Taper Constant, Frequency, Plate.

Introduction 

Vibration means any motion that repeats itself after an 

interval of time. Some other   definitions of vibration 

as follows:- 

1. A rapid linear motion of a particle or of an elastic 

solid about an equilibrium position. 

2. A rapid oscillation of a particle or particles or 

elastic solid or surface. 

3. The particle oscillating about main position with 

high frequency. 

4. Vibrations are mechanical oscillation about a 

reference position. 

Vibrations are classified in to two ways:- 

 Desirable / Controlled / Required / Wanted 

vibrations. 

 Undesirable / Uncontrolled / Not required / 

Unwanted vibrations. 

 There are many applications in our daily life where 

vibrations effect are required e.g. in loudspeakers, 

space shuttles, satellites where discrepancies in the 

temperature also affect the vibrations. Controlled 

vibrations effects are required in health industry, paper 

industry, design of structures, building construction, 

reducing soil adhesion and many more areas. On the 

other hand, unwanted vibration causes fatigues. 

Unwanted vibration can damage electronic 

components of aerospace system, damage buildings by 

earthquake, bring tsunami and contribute to toppling 

of tall smokestacks, collapse of a suspension bridge in 

a windstorm. Hence, vibrations totally affect our day-

to-day life. 

Vibrations are of many types such as free vibration, 

force vibration, linear vibration, non-linear vibration, 

damped vibration, undamped vibration etc. Free 

vibrations are those in which energy is neither added 

nor removed from the vibration system. It will just 

keep vibrating forever at the same amplitude, whereas, 

forced vibrations are those in which energy is added to 

the vibrating system, for example in a clockwork 

mechanism where the energy stored in a spring is 

transferred a bit at a time to the vibrating element. 

Tomar and Tewari [1] presented an analysis on effect 

of thermal gradient on frequencies of a circular plate 

of linearly varying thickness. Gupta and Khanna [2-3] 

discussed the free vibration of clamped visco-elastic 

rectangular plate having bi-direction thickness 

variations. Larrondo, Avalos, Laura and Rossi [4] 

studied vibrations of simply supported rectangular 

plates with varying thickness and same aspect ratio 
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cutouts. Free vibrations of rectangular plates of 

parabolically varying thickness have been investigated 

by Jain and Soni [5].  Bhatnagar and Gupta [6] 

discussed thermal effect on vibration of visco-elastic 

elliptic plate of variable thickness.  

Frequency parameter is calculated for first two modes 

of vibration for clamped orthotropic rectangular plate 

whose thickness varies parabolic and linear in both 

directions under exponentially varying temperature 

distribution, for various values of thermal gradient α 

and taper constants β1, β2. These results have been 

compared with those obtained for orthotropic 

rectangular plate with bi-directional parabolic 

variation in thickness in the absence of temperature 

gradient. 
 
Methodology 

Let the plate under consideration is subjected to a 

steady one dimensional temperature distribution T 

exponentially along x- axis, then as [3]  
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where T is the temperature excess above the reference 

temperature at a distance x/a  and T0 is the temperature 

excess above the reference temperature at the end of 

the plate i.e. at x=a. For most orthotropic materials, 

moduli of elasticity (as a function of temperature) are 

defined as,  
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Where Ex  and Ey are Young’s moduli in x- and y- 

directions respectively and Gxy is shear modulus. Here, 

γ is slope of variation of moduli with temperature. 

Where 𝛼 = 𝛾𝑇0(0 ≤ 𝛼 < 1), is thermal gradient 

parameter. 

The governing differential equation of transverse 

motion of an orthotropic rectangular plate of variable 

thickness in Cartesian coordinate is,  
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                                                       (3) 

Where Dx  & Dy  are flexural rigidities in x- and y- 

directions respectively and Dxy is torsional rigidity  

                  1 ( )x y y xD D D          (4) 

Where vx  & vy are Poisson’s ratio. 

and  
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      (5) 

For free transverse vibrations of the plate, ( , , )w x y t
can be defined as,  

       ( , , ) ( , ) iptw x y t W x y e      (6) 

where p is radian frequency of vibration. 

Two term deflection function for Clamped rectangular 

plate is taken as,  
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(7) 

Where A1  and A2 are constants to be evaluated. 

Using equation (3) in the values of Dx, Dy & Dxy  , we 

have 
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When the plate is executing transverse vibration of 

mode shape W(x,y) then Strain energy V and Kinetic 

energy T1 are respectively expressed as, 
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where 
 
is the mass density. 

Using equations (4), (7) & (8) in equation (9), we have

3

2 2
2 2

1 2 2

2 2
0 0 1 1

2
2 2 2

0

2 2

1

1
1 1

1
2

2 12(1 )

4 (1 )

1
x a

b

x
x y

x y

e e
h

e e

E E EW WV dydxv
x E y E

GW W W
v v

x y E x y



 

    
             

 
                           

  
        

                




a



                                  

                                                                                (11) 

Variation in Thickness 
Thickness h of the plate is assumed to be varying 

parabolically in both directions  
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Using equation (4.12) in equations (4.10) & (4.11), we 

have: 
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Method of Solution 

An approximate solution to the current problem is 

given by the application of Rayleigh – Ritz method. In 

order to apply their procedure, maximum Strain energy 

must be equal to maximum Kinetic energy. Therefore 

it is desired that following equation must be satisfied 
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On substituting the values of ‘V’ & ‘T1’ from equations 

(14) & (13) in equation (15), we have 
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is a frequency parameter , 
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Boundary Condition and Frequency Equation 

For a clamped rectangular plate, boundary 

conditions are, 
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Equation (16) contains two unknown parameters A1 & 

A2  to be evaluated. Values of these constants may be 

evaluated by the following procedure 
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On simplifying equation (21), we get following form,  

             
1 1 2 2 0q qc A c A               (22) 

where cq1 & cq2 involves the parametric constants and 

the frequency parameter. 

For a non - zero solution, determinant of coefficients 

of equation (22) must vanish. In this way frequency 

equation comes out to be: 
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Frequency equation (23) is quadratic in λ2, so it will 

give two roots. These two values represent the two 
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modes of vibration of frequency . From equation (23) 

one can easily obtain frequency for both the mode.  

Numerical evaluations 

Frequency parameter is calculated for the first 

two modes of vibration for different values of taper 

constants and thermal gradient, for a clamped plate 

with parabolically variation in thickness in both 

directions. Frequency equation (14) is quadratic in λ2, 

so will give two roots. Let they be λ1 & λ2 respectively. 

These two values correspond to first and second modes 

of vibration respectively. The parameter for 

orthotropic material has been taken as: 
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Verification of work is done by comparing these with 

unheated plate for doing so thermal gradient and taper 

constants are allowed to be zero.  

 

Results and discussion 
Table 1 shows variation of frequency parameter λ 

with thermal gradient parameter ‘α’, for various values 

of taper constants β1 & β2, for a clamped plate for both 

modes of vibration. From fig. it is clear that with 

increase in ‘α’, decrease whether β1 & β2 are zero or 

non-zero. It is to be noticed that λ decreases sharply for 

second mode of vibration as compared to the first mode 

of vibration.  

Table 2 display the variation of taper constant ‘β1’ with 

frequency parameter λ, for both modes of vibration. It 

is observed that for both the modes of vibration λ 

increases with increase in ‘β1’, whether the plate is 

heated or unheated. For non-zero ‘β2’, ‘λ’ has higher 

value and from unheated to heated plate, value of ‘λ’ 

decrease.  

A comparative study was done for the plates regarding 

variation in thickness under exponential temperature 

gradient i.e. plates with linear and parabolic variations 

in thickness were compared. It was found that for plate 

having parabolic bi-directional variation in thickness, 

all the effects were occurring for lesser values of 

frequency parameter as compared to that of linear bi-

directional variation in thickness.  Hence it is 

concluded that plates with parabolic variation in 

thickness are more stable as compared to those of 

linearly varying thickness, for bearing up of 

exponential thermal gradient effects.  

 

 

Table 1: Values of frequency parameter λ2 for different values of thermal gradient  and constant aspect ratio a/b = 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

β1 = β2= 0.0 β1=0.2, β2=0.6 

First Mode    Second Mode First Mode    Second Mode 

0.0 37.100125 151.989765 50.259234 204.088750 

0.2 36.375345 143.127576 47.174914 195.000857 

0.4 34.156701 133.286754 44.120149 182.001400 

0.6 29.478911 122.011026 40.191510 168.280211 

0.8 26.298461 110.105108 36.226361 154.123412 

1.0 23.301244 99.173126 32.170169 142.291123 
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Table 2: Values of frequency parameter λ2 for different values of taper constant β1 with thermal gradient =0.0 and constant 

aspect ratio a/b = 1.5 

 
Conclusion 

Aim is to provide such kind of a 

mathematical design so that scientist can perceive their 

potential in mechanical engineering field & increase 

strength, durability and efficiency of mechanical 

design and structuring with a practical approach 

.Actually this is the need of the hour to develop more 

but authentic mathematical model for the help of 

mechanical engineers practitioners.Therefore 

mechanical engineers and technocrats are advised to 

study and get the practical importance of the present 

paper and to provide much better structure and 

machines with more safety and economy. 
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β1 

β2= 0.0 β2=0.6 

First Mode      Second Mode First Mode   Second Mode 

0.0 37.100122 151.182762 47.130832 192.220501 

0.2 39.547602 162.357323 50.129232 204.088711 

0.4 42.621372 174.130581 53.229124 219.141731 

0.6 45.351001 186.139346 57.309312 234.195433 

0.8 49.174634 200.121068 61.231782 252.250523 

1.0 51.134173 214.115691 65.221893 265.168244 
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